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Abstract. We study the scaling law for ¢ — 0 of the maximal Lyapunov exponent
for coupled chactic map lattices and for products of random Jacobi matrices. To this
purpose we develop approximate analytical treatments of the random matrix problem
inspired by the theory of directed polymers in a random medium: a type of mean-field
method and a tree approximation which introduces correlations. The theoretical resuits
suggest a leading |log £[~! increase in the maximal Lyapunov exponent near £ = 0,
which is confirmed by numerical simulations, also for coupled map lattices. A dynamical
mechanism responsible for this behaviour is investigated for a 2 x 2 random matrix
model. The theory also predicts a phase transition at a critical value of the coupling
£, which is not observed in numerical simulations and might be an artifact of the
approximation.

1. Introduction

The appearance of defect-mediated dynamics, the spatio-temporal intermittency typ-
ical of certain fluid regimes, the spiralling waves observed in chemical reaction-
diffusion processes, and the self-regulatory behaviour of population dynamics are all
different manifestations of the complex features of spatially extended dynamical sys-
tems. Considerable effort has been devoted in the last years to include common
properties and peculiarities of these systems in a general framework. The main
ingredients, particularly fit for a numerical implementation, are space and time dis-
cretization and local interactions, Coupled map lattices (CMLs) are probably the most
refined models that have been proposed for this purpose [1, 2]. The general evolution
rule for the state variable at site ¢ and time ¢ in a 1D lattice is

xit! = F(y}) @

t " t t - ¢ Wt t
yi = Do(zi i, 7)) Topzi ool +ogayy,

where oy = (1 —¢), ay, = &/2, £ € [0,1] being the diffusion parameter. Moreover,
F is some map of the interval [0,1] into itself and x¢, y! €]0,1}.

Rule (1.1) can be interpreted both as the application of Fo D), to the state
variables z! and the application of D, o F' to the state variables y. Here we adopt
the former interpretation and study the dynamics (1.1} on a lattice of size N with
periodic boundary conditions, ie. z} =z} 5.

0305-4470/92/184813+14304.560 (© 1992 10OP Publishing Lid 4813



4814 R Livi et al

It has been proven that in the small ¢ limit, the dynamics are ergodic for a special
set of expanding maps [3]. Numerical simulations suggest that this is also true for a
wider class of chaotic maps. On the other hand, one knows that increasing e, new
dynamical regimes appear (e.g. spatio-temporal intermittency [1, 4]). The general
feature emerging from the simulations is that the ‘chaoticity’ of local dynamics is to
some extent suppressed by the diffusive coupling.

Lyapunov characteristic exponents are the most direct indicators of chaotic be-
haviour. They can be computed by evolving the linear dynamics of vectors &%, in the
tangent space of (1.1)

R = Aty (12)
where the only non-zero elements of the N x N matrix A® are
8F(y!)y 8F
1 — LI,
(A');; = 31_;_ = (‘9?0_1‘—;‘

1

j=i—1,ii+1 (1.3)

and periodic boundary conditions imply that (A*), ; = (A*), v, (A')y Ny =
(A*) - In particular, the maximal Lyapunov exponent A is defined, in the thermo-
dynamic limit, as

A= lim lim —Z:ln (1.4)

Nt T |mNn
Apart from special cases [5], A cannot be exactly determined by analytical techniques.
In fact, there are two main sources of difficulties. The first one originates from space-
time correlations typical of any deterministic evolution rule, like (1.1}. The other one
follows from the non-commutative nature of process (1.2).

In order to obtain at least some approximate analytical solution, we replace the
coefficients 8 F /8y} in (1.3) by a §correlated random process a!. This amounts to
a suitable random matrix approximation of the dynamics defined in (1.2) and (1.3)
[6]. In formulae

g = RgY, {1.5)

with (R‘)‘-J- = aja;_; (j = i—1,i,i41). Periodic boundary conditions imply for R*
the same relations as for A*. We expect that this approximation works increasingly
better for ¢ — 0 and for sufficiently chaotic maps F', as these conditions guarantee
small space and time correlations, respectively.

The advantage of a random matrix approach is that one can apply mean-field
techniques for evaluating A in close analogy with those used to solve analyticaily
the problem of directed polymers in a random medium [7). We further restrict our
investigation to the case of positive random numbers a! so as to simplify the analysis
(this corresponds to considering the class of maps F' with an everywhere positive
derivative). More precisely, the REM (random energy model) formalism [8], yielding
the exact solution for sparse random matrices [7], is adapted in section 2 to Jacobi
random matrices. This allows us to predict a logarithmic behaviour for A in the limit
g—0

A~Ay+|loge|™! (1.6)
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where A, is the Lyapunov exponent for ¢ = 0. Moreover, this mean-field method
indicates the existence of a critical value e, separating two different ‘phases’.

Numerical simulations for products of Jacobi random matrices (1.5) confirm the
logarithmic scaling behaviour (1.6). On the other hand, no indication of a phase
transition is found. In addition simulations on a 10 cML model of expanding piecewise
linear maps with positive slopes confirm both the existence of the predicted scaling
behaviour, and the absence of a phase transition,

In section 3 we follow a more refined approach to the problem, based on the
so-called tree approximation [9]. The results coincide with those derived in section
2. One might expect that higher-order tree approximations may remove the phase
transition.

Section 4 is devoted to the analysis of the simplest version of our model, ie.
product of 2 x 2 random matrices. A logarithmic scaling law of A for ¢ — 0 is
again found by a fully analytical treatment. This allows us to explain this ‘universal’
property reducing the problem to the study of a suitable diffusive process.

Conclusions and perspectives are reported in section S.

2. Mean-field approach

In this section we develop a mean-field approach to the estimate of the maximal
Lyapunov exponent A for the product of random matrices defined in (1.5). This
method is inspired by the one used in the approximate solution of the problem of
directed polymers in a random medium [7].

According to definiton (1.5) the generic element &} of the Lyapunov vector is the
sum of the multipliers M associated to all paths belonging to the light-cone of site
(Z,t) in the spacetime lattice. More precisely let us assign a factor ¢/2 to diagonal
(D) links and a factor (1 — e) to horizontal (H) links joining two neighbouring sites
(see figure 1).

A Je.
~ o ~
~ ~ B
~
ol 7 Figure 1. Some typical paths joining point A with
point B through herizontal {full) and diagona! (bro-
ken) links.

The multiplier M_,(m,T) associated with a generic path p of length T m with
D-links can be written as

M,m,T) = (5) (-7 [ a @1

kep
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where a; is a shorthand notation for “:E:;’ k being a parametrization of path p.

Since all components £} are equivalent, the maximal Lyapunov exponent is given by

. 1
A= lim —log } S M,(m,T). 2.2)

Pym

Observe that in this approach the limit T — oo implies the limit N — oco.
It is useful to define the rate

T )
A= —-—Z*ﬂ,}l?g i .3)

where, for the sake of simplicity, we have dropped the dependence on the path p.
The probability density P of X satisfies the scaling law

P(A,T) ~ e IT, 2.4)
It is convenient to introduce the Legendre transform L(q) of f ()
F(X) = gh - L(q) r'A=q (2.5)

where the prime denotes the derivative with respect to X If the e ¢ values are
d-correlated, then

Liq)= log/Q(a)aqda, (2.6)

where Q(a) denotes the probability distribution of o values.
By inserting equation (2.3} into (2.1), we obtain an expression for the growth rate
A along the path p,

log M,(m,T)

A= T

=5\+mlog§+(l—-m)log(1.—e) 2.7
where £ = m/T is the fraction of D-links. The probability P(A,T,z) to find a
path of length T characterized by a growth rate A and by a fraction = of D-links
P(),T,x) is obtained by substituting equation (2.7) into (2.4)

POAT,z) = P(A-(1—=2)log(1—¢)—zlog(e/2),T). (2.8)

It is worth to observing that, although the random variables a! are §-correiated,
the multipliers M,(m,T) are not mdependent from one another because of the
superposition of many different paths entering (2.2). Since a full account of these
correlations is not feasible, we estimate A under the approximation that all multiplica-
tive processes are reciprocally independent. This is essentially the idea of the REM
introduced by Derrida [8]; the main difference in our case is that path-dependent
weight factors «; have to be assigned to the random entries of matrix (1.5).

Under this approximation the typical number N(A, T, z) of paths of length T
with a fraction = of D-links and characterized by the growth rate X factorizes into the
product of the probability in formula (2.8} by the multiplicity of such paths. Taking
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into account that from each site two paths depart with a D-link and only one with an
H-link, we immmediately obtain

2T=(7T1)
N(T(1 = x)!

By replacing 3°, ., with [dx dAN(A,T,z) in (2.2), one finally obtains

NN T, z) = P(A,T,a:)(Tx 2.9

e = /d:chexp [(= FO) + 2log2 — (1 — z)log(1 — ©) — zlog = + A} T]
2.10)

where we have also used the Stirling formula to approximate the factorials in
(2.9). The integral can be computed by the standard saddle-point method when
T — oc, taking into account that X is a function of both A and x (see (2.7)).
The stationarity conditions are

FN=1 f(Nlog 2(1; ©) — log 2(1; 2). 2.11)

Hence,
r=c¢ (2.12)

ie. the fraction of D-links maximizing the contribution to the Lyapunov exponent
coincides with the coupling strength itself. Upon substituting equations (2.7) and
(2.12) into (2.10), and neglecting corrections to the saddle point, we find

A=3— £, @13)

From the first part of (2.5) it is readily seen that A can be written in the more
compact form

A= L(1) . (2.14)

where L(1) is the generalized Lyapunov exponent [10] for g = 1 associated with the
scalar multiplicative process. Notice that A is independent of the coupling constant ¢,

This result holds only if the typical number of paths maximizing the integral in
(2.10) is larger than 1, otherwise there are no paths, for T — oo, verifying the
sationarity conditions (2.11) (this is a well known argument in the standard solution
of the REM model [8]). In such a case, the Lyapunov exponent is determined by
setting the exponential growth rate of A'(A, T, z) equal to zero,

f(i)+mlog%m+(1—-a:)log(l—:n)=0. (2.15)

More precisely, once ) is determined from (2.15) and the second part of (2.11) (in
fact, the maximization over x values is still meaningful), the Lyapunov exponent is
simply given by the corresponding A value. Notice that in this phase the equality
f' =1 no longer holds, and z is different from e.
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One may ask whether both phases can indeed be observed by varying the coupling
strength £. The second one is equivalent to the low-temperature phase in the REM
model and certainly holds in some neighbourhood around £ = 0, where clearly A =
Ay = lim,_, L(q)/q, ie. the Lyapunov exponent coincides with the characteristic
exponent of the random process a,. The presence of the first phase depends upon
the existence of a solution of the equation

~edogle. — (1-e.)log(l—-e) = f(N). (2.16)

Here, the function f is computed for the value of the argument where f’ is equal
to 1. As the maximum value of the left-hand side (achieved at € = 2) is log 3, f
must be smaller than such a value, in order to have the transition. Therefore, the
first phase can be observed only for suitable probability distributions Q(a).

An interesting point is related to the scaling dependence of the Lyapunov expo-
nent on the coupling strength. To this aim, let us expand f(A) around the maximum
Ap

J(X) = 88} 217)

where &, = (A — A,). Let us now substitute (2.17) into (2.15) and (2.11). Taking the
leading order in ¢ and « as both tend to zero, the latter equations reduce to

2086, loge =logx 383 = —zlog z. (2.18)

After solving for &, from the first part of (2.18) and substituting in the second one,
we find an equation for =

log ¢ = —48x(log €)?. (2.19)

By introducing the auxiliary variables w = —log = and ¢ = 48(loge)?, (2.19) reads
as

log u =log ¢ — u. (2.20)

Since, for £ — 0, i.e. ¢ — oo, the leading-order solution of (2.20) is u = log ¢, one
easily obtains

.= log |log | + O{loglog |log ¢|)
- 203(loge)? '

Thus we see that @ goes to zero, although more slowly than e. By substituting in the
first part of (2.18) we find the solution for 6,,

(2.21)

log | log |

b= Bloge

(2.22)

The expression for A is obtained from (2.7) neglecting next-to-leading order terms,
both in = and ¢

A=Ay+ 6, +zloge. (2.23)
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Inserting equations (2.21) and (2.22) into (2.23) yields,
1
A=a, - oglloge] 2.24)

23loge

which indicates a very slow convergence towards the limit value A, for € = 0.

We cannot expect that (2.24) holds exactly, as the model equations have been
derived disregarding all kinds of correlation. Nevertheless, this approximation is
sufficient to catch the relevant features.

We have performed numerical simulations with products of random matrices of
various sizes, and uniform distributions Q( ) over different intervals {a_;, , @ya.)- In
figure 2 we report

Y =(A~-Ay)log,, e (2.25)
against e for 100 x 100 matrices (for matrices of this size, A turns out to be almost
independent of ¥V (see (1.4))). X clearly converges towards a constant value for
e — 0. The constancy of £ implies that the leading behaviour |log ¢|~! is confirmed,
while no evidence is found of the further correction factor log |log €|. This should
not be considered as a major drawback, since (2.24) is based on a model which
neglects all kinds of correlation.

0.75
z A
0.2 S ’_,--"' R,
'/
0.70 -
0.1 1
logioe ] £x 100
0.0 e ‘ 0.65 :
-12 -8 —4 0 0.0 0.5 1.0

Figure 2. T (see equation (2.23)) against e for
Bmax = 3, @in = 1 (squares), amin, = § (circles)
from products of 100 x 100 random matrices. The
curves are guides for the eyes.

Figure 3. A against £ for amijn = 1 and apmax = 3
(continuous curve), compared with the theoreli-
cal prediction (broken curve). The arrow indi-
cates the transition point as from the mean-field

approach. Note also that the asymptotic value
A(0) = 2log3 — 1 = 0.6479... lies under the
lower edge.

In figure 3, A is plotted against ¢ for the same parameter values as in figure
2. We do not observe any phase with constant A and even more, no evidence of
non-analytic behaviour.

Simulations have also been performed directly for a CML model. We have chosen
the map F as in figure 4, such that all multipliers are positive. The results for 3,
reported in figure 5, again confirm the scaling law (1.6). This last result suggests also
that this scaling law is largely independent of the probability distribution Q(a). In
fact, in the case of the map in figure 4, Q(a) = v8(a—-9) +(1-v)8(a-9/4),y €
[0, 1], substantially different from the flat distributions used in the simulations with
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1.0 ' 0.4
0.5 1 0.2 1
/ / X log e
0.0 ‘ - 0.0 — ;
0.0 0.5 1.0 -10 -5 0

Figure 4 The local map F(x) chosen for numer-  Figure 5. ¥ against ¢ for a chain of 100 maps as
ical simulations. The two slopes are 9 and 9/5. in figure 4.

the random matrices. Let us also observe that in the CML case the distribution Q{a)
does depend on ¢ through the weight . Nevertheless our numerical results show
that this does not affect the leading term of the scaling law.

12 Tha éman approxi P
oe LIIC HAKE IJI.IIU:\IIIIHI.I.UI.I

Let us consider the multiplicative process (1.2) from a different point of view. The
elements of the vector {* are updated according to the rule

e = a((1- ) + Le(El + £1,,) St

where o is the random multiplier.

Following the dictionary of directed polymers, a is parametrized as exp(—GV),
where V' is a random potential with probability distribution p(V'), and 3 is the
inverse temperature. The problem is therefore reshaped as follows

£+ = exp= AV -in(1-)) gt +exp“’(v““("2”(ﬂ_1 + &) (3.2)

where the multiplicative factors (1 — €) and £/2 are raised to the power 8. It is
worth observing that 3 here is a fictitious parameter which will be set equal to 1 in
the end.

The approximation consists in neglecting correlations after one step in the re-
cursive process. More precisely, the following evolution equation for the probability
distribution P(£) of £ is written

Pop(&) = j dEl_ dElaEl,, AV p(V) Py(€i ) PE) P(Ei41)8(E ~ £41).  (33)

This is called tree approximation in the theory of directed polymers [9]. Some
infrarmatiane Aan tha caluntinm ~AF 2TV ara nhtainad hy unfrndn.mnn tha asanarating
LUUTINaUuiy bl ulc duiulivil Ul \v.7) aiv Colaines oy nt UUuling v penlialllig

function

G,(z) = (exp(~ exp™?* £)), (3.4)
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where the average {.), is performed over the probability distribution P,(¢). According
to (3.3), G,(z) evolves as

Gi(z)= jp(V)dVGt(z +V-In(1- €))Giz + V —In(ef2)). (3.5)
The initial condition is given by

Gy(=) = exp(— exp 7). (3.6)
The generating function has the following property

})_.ngo Giz)y=1 m1_121m G,(z)=0. 3.7

The value G, = 1 is an unstable fixed point of the map (3.5), while G, = 0 is a

stable fixed point. In analogy with directed polymers, the dependence on g is entirely

contained in the initial conditions. In our case this is a straight{orward consequence

of the initial choice of raising to the power 3 the s-dependent factors in (3.2).
Equation (3.5) admits travelling wave solutions [9]

G(z) = w(z — ct). (3.8)
The asymptotic behaviour of w(y) is, from equations (3.4), (3.6),
w(y)~1—expfy. (3.9

This equation shows that the product ¢8 corresponds with the usual definition of the
Lyapunov exponent.

By substituting equations (3.8) and (3.9} into (3.5) and neglecting higher-order
terms, one obtains the following equation for the wave velocity

o(Bre) = { 1/81n[f p(V)AV exp(-BV)((1 - )P +2(¢/2)")]  if B < B.(e)
LB if 8> A,(c)
(3.10)
where (3.(¢) is implicitely defined by
de(Bre)|
46 lp=p. > (3.11)

This relation represents a critical line in the parameter space (3,¢). Its intersection
with the line 8 = 1 yields the critical value €,

In ((1- €)ime (%)) =1In{a) - (“<l:)“) (3.12)

where the averages are performed over the given probability distribution of a. One
can notice that in the derivation of (3.12) it has been crucial to begin with a generic
value of 3.
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The critical value ¢ defined by (3.12) coincides with the one obtained with the
mean-field method in section 2. In fact, one has to impose that equations (2.10) and
(2.14) hold simultaneously. Then, from the Legendre transform (2.4), observing that
A = L’'(q), one obtains

— ()= L(1) - L'(1) . (3.13)

which manifestly coincides with (3.12).
Finally, the Lyapunov exponent is given by

A =5.e(8,,¢) ife<e,

) (3.19)
A =c(1,g)) ife >e..
This last result holds under the assumption that
A.(e) <1 ife<e
(=) c (3.15)

G.(g) >1 ife>e,

which has been numerically verified for some probability distributions Q(a). In fact,
from (3.10), one can use the fact that c¢(3,¢) is constant for a given value of ¢ if
ﬁ > nBc‘

From (3.14) and (3.10), one obtains the same expressions for the maximal Lya-
punov exponent as those derived in the previous section with the mean-field method.

4. Two-dimensional model

In order to better comprehend the origin of the scaling behaviour of the maximal
Lyapunov exponent, we now study the simplest non-trivial case: 2.x2 random matrices
of the form (1.5). The evolution of the two components v and v of a vector £ is
described by the recursive relation

Up gy =iy ((1 - S)Un + E’U") (4_1)

Vn+1 =bn (‘Eun + (1 - E)Un)

where a,, and b, represent two independent realizations of the same random process,

with a,, b, > 0.
Equation (4.1) can be written as a recursive equation for «, only,
b
Uy = (1-¢€)a, (1 + ==t ) u, + a, b, (2= (1 -€)H)u,_,. 4.2)
n=-1

This equation can be transformed into a 1D nonlinear equation by introducing

S, =u,fa,_u,_,. 4.3)

We obtain

b, _ by, 1
S =(1-0) (14 225 ) - -2a et o (@.4)

n-1 n-1%n
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Notice that S, represents the multiplicative correction to the uncoupled (i.e. ¢ = 0)
process, so that it is a proper variable to estimate the variation of the Lyapunov
exponent.

From (4.4) we also notice that the two random processes always occur via their
ratio

ey =by_y/a, ;. (4.5)
Therefore, (4.4) can be rewritten as
Sapr =(1— )1+ ¢,) = (1 - 2€)e, /S, 4.6)

Fore =0, 5, =1 is a fixed point of (4.5), in agreement with the interpretation of
the variable S,,. If one is interested in the small e limit, it is useful to introduce the
new variable

R,=S, - 1. 4.7

Equation (4.5) can be finally written as

e, R, 2¢c,
R, = 1+R e(l-i-cn—l_l_Rn). (4.8)

The structure of (4.8) reminds us an analogous equation derived to describe anoma-
lous diffusion in a 1D chain characterized by random potentials [11}. In that case the
starting Master equation was mapped onto a Schridinger problem and then trans-
formed into a transfer matrix equation for the spectrum. The multiplicative noise
was shown to lead to a new type of intermittency phenomenon with entirely different
scaling laws. Here, we show that a similar scaling law is found, despite the fact that
it is not explained in terms of some intermittent mechanism.

Let us first investigate the case £ = 0. The hyperbolic map (4.8) crosses the
blsectnx in R®)(c,) =0and R(c,) =¢, ~1 Forc, >1(c, <1) the slope

=0R,,,/9R, is larger (smaller) than 1 in R(®) and smaller (larger) than 1 in
R(l) (observe that for ¢, = 1, R(®) = R()). Being R(®) independent of the random
variable c_, it is a true fixed point of (4.8). In the linear approximation around
RO, R =TIr5 ¢; Ry Since c; is equally probable to (c;)", the fixed point R(®)
is margmally stable. As a consequence, its stability is determined by the nonlinear
contribution: for R, > 0, it is straightforward to show that R, /R, < [1'2, ¢, ie.
RO is nonlinearly stable from the right. The same argument shows that R(®) is
unstable from the left.

For small  and |6,| >  (with §, = 1 - ¢,,) the two intersections of (4.8) with
the bisectrix at order % are

elc

RM(c,)=¢c, —1-ec, — — *.9)

- c,

RO(¢ y= e+ 16

n

wherc the dependence of both R(%) and R() on e is understood. Note that R(®) now
does depend on c, at order 2. When |8, | < e, i.c. when the hyperbolic map (4.8)
is nearly tangent to the bisectrix in the origin, the two intersections are, at order ¢,

) _ On 2, 52
R® = -t —cdyfe? + 2. (4.10)
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It is important to observe that, since the term in the square root of (4.10) is positive
definite, the two intersections always exist also in this case.

'We can now show that the intersection R{“)(c,) with slope o, larger than 1 is
smaller than —e for all ¢,, while the intersection R(*)(c,) with slope o, smaller

than 1 is larger than —¢ for all ¢,. In fact, from equations (4.9) and (4.10) it follows
that '

R™)(c,) =RO)(c,) R®)(e,) = RW(e,) ife,>14+e¢
R®™(e,) =R(c,)  RUNc,)=RM)(c,) ifl-e<c,<14e (411)
R®(c,) =RM(c,) R*)(c) = RO(c,) ife, <1—e.

One can immediately notice that R(*)(¢,) < ~2 —e? = A, and R*(c,) > —¢ +
eZ = B. Now we can prove that, if Ry > B, then R, > B ¥n. In fact, from B > A
it follows that R, > R(“)(c,) for all c,. The only ¢, values giving R, < R, are
those for which R(-’)(co) < R, but then R, > B. This concludes the proof
Accordingly, for large values of R, , nonlmear terms prevent R, from diverging
to +oo, while for R, ~ B, 2 terms prevent R, + £ from bccoming smaller than
2. In particular, this last mechanism excludes the existence of any intermittent
phenomenon. Therefore, the dynamics of R, is bounded both from above and
below. Within these bounds, and for £ small enough, we can linearize the equations
of motion around —e and neglect £ terms. We find that w,, = log( R, + ¢) exhibits
a diffusive motion

Wy = w, +loge, . (4.12)

Accordingly, the dynamical behaviour can be modelled as a pure diffusive process in
the interval w,;, = 2loge+ g, < w, < g, = w,,.,, with g, and g, independent of
e. Moreover, the previously discussed confinement mechanisms of the dynamics can
be schematized as reflecting barriers set at w,,, and w,,,. Hence, the probability
P(w)dw to find w between w and w+dw is expected to be flat inside [w,;,, Wy 0.l
except for some deviations in two finite regions around the extrema of this interval.
This conjecture has been numerically verified (see figure 6). We will see that the
unknown constants g, and g, contribute only to the prefactors, while they do not
affect the scaling law of the Lyapunov exponent.
Let us now link the probability density P(w) with the Lyapunov exponent

= % (}: loga, + ZIog Sn) . (4.13)

The first term in the right-hand side of {4.13) is the Lyapunov exponent A, of the
uncoupled case. Recalling (4.7) we obtain

R
Axa+ 22 oA 4 (R (4.14)

where only the first-order term in R, has been retained. The average R value can
be determined from the w distribution

4z e —¢
(R) =~ f dw. @.15)
2loge+g G2~ 91 ~ 2105 €
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Figure 6. Probability distribution of w for 2 x 2 Figure 7. T against « for 2 x 2 random matrices;
random matrices; an and b, are randomly chosen - circles and dots refer to the same parameter values
from a uniform distribution in the interval [1/3,3].  as those reported in figure 2 for 100 matrices.
Curves a and b refer to £ = 10~* and ¢ = 1078,

respectively.

Neglecting higher-order terms in &, we obtain

e92

{R) ~ “STege (4.16)
Such a scaling behaviour coincides with the one found in the previously mentioned
Schrédinger problem [11], although we are not in the presence of any intermittency.
Notice also that only g, contributes to the leading term. This is somehow clear
because only large R, values give relevant contributions to the average.

We have performed numerical simulations for the same random processes studied
in section 2. The results are shown in figure 7. The logarithmic behaviour is again
perfectly confirmed. We also see that the asymptotic ¥ value is significantly smaller
than in the high-dimensional case.

5. Conclusions and perspectives

We have studied the scaling law of the maximal Lyapunov exponent A when ¢ — 0
for coupled map lattices, where the local map F is chaotic and for products of
Jacobi random matrices, which can be thought of as an approximation of the chaotic
dynamics,

Analytical and numerical methods show the presence of a logarithmic behaviour
as g — 0:

A~Ag+|logel™".

This scaling law is derived by an extension of the techniques used for solving the
REM [8), which amounts to neglect correlations among paths, The introduction of a
partial correlation by a proper tree approximation [9] does not modify this scaling
behaviour. Both analytical treatments suggest the presence of a phase transition at
€., Which is not seen in numerical simulations. Higher-order tree approximations [12]
might remove this phase transition,
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A turns out to be an increasing function of e. This result seemingly contradicts
the statement that the diffusive coupling tends to decrease the ‘chaoticity’ of a CML.
In fact, we expect that a more appropriate global indicator as the Kolmogorov—Sinai

entropy (i.e. the sum of all the positive Lyapunov exponents) should decrease for
increasing e.

In the special case of 2 x 2 ramdom matrices we have identified the dynamical
mechanism which leads to the scaling law. It is a diffusive process of a proper variable
inside a finite interval, whose lower limit depends on . One could conjecture that the
same mechanism is present also in matrices of higher rank, although the mathematical
treatment cannot be a direct extension of the 2 x 2 case.
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