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AbstrneL We study the =ling law for c - 0 of the maximal Lyapunov exponent 
for mupled chaotic map laltices and for products of random Jacobi mauices. lb this 
pu'pose we develop approximale analytical lrealments of the random, malM problem 
inspired by the theory of directed polymers m a random medium: a type of mean-field 
method and a wee approximation which introduces "elations. Ihe lheoretical resulfs 
suggest a leading Ilog~I-' increase m lhe maximal Lyapunov exponent near E = 0 ,  
which is mnfirmed by numerical simulations, also for mupled map lattices. A dynamical 
mechanism responsible for this behaviour is investigated for a 2 x 2 random matrix 
model. Ihe theory also predicts a phase transition a t  a mitical value of lhe mupling 

which is not observed in numerical simulations and might be an anifacl of the 
approximation. 

1. Introduction 

The appearance of defect-mediated dynamics, the spatio-temporal intermittency typ- 
ical of certain fluid regimes, the spiralling wves observed in chemical reaction- 
diffusion processes, and the self-regulatory behaviour of population dynamics are all 
different manifestations of the complex features of spatially extended dynamical sys- 
tems. Considerable effort has been devoted in the last years to include common 
properties and peculiarities of these systems in a general framework. The main 
ingredients, particularly fit for a numerical implementation, are space and time dis- 
cretization and local interactions. Coupled map lattices (CMIS) are probably the most 
refined models that have been proposed for this purpose [I, 21. The general evolution 
rule for the state variable at site i and time 1 in a I D  lattice is 

zf+1 = F( yi') 

y; = D,(zf-,,z;,z:+,) = aozf + a-lz i - l  + all:+, 
I (1.1) 

where a. = (1 - E ) ,  a+, = E / &  E E [0,1] being the diffusion parameter. Moreover, 
F is some map of the interval [0,1] into itself and z:, y: ~[0,1]. 

Rule (1.1) ran be interpreted both as the application of F o D ,  to the state 
variables zf and the application of D, o F to the state variables yf. Here we adopt 
the former interpretation and study the dynamics (1.1) on a lattice of size N with 
periodic boundary conditions, i.e. z: = ~ f + ~ .  

oM5-4470/92/184813+14504.50 @ 1992 IOP Publishing U d  4813 
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It has been proven that in the small e limit, the dynamics are ergodic for a special 
set of expanding maps [3]. Numerical simulations suggest that this is also true for a 
wider class of chaotic maps. On the other hand, one knows that increasing E ,  new 
dynamical regimes appear (e.g. spatio-temporal intermittency [l, 41). The general 
feature emerging from the simulations is that the 'chaoticity' of local dynamics is to 
some extent suppressed by the diffusive coupling. 

Lyapunov characteristic exponents are the most direct indicators of chaotic be- 
haviour. They can be computed by evolving the linear dynamics of vectors <; in the 
tangent space of (1.1) 

(1.2) <'+I - A'& 
N -  

where the only non-zero elements of the N x N matrix A' are 

and periodic boundary conditions imply that (At)l,o = 

dynamic limit, as 

( A ' ) N , N + l  = 
In particular, the maximal Lyapunov exponent A is defined, in the thermo- 

ll€2'll 
I l d l l  ' 

T A =  lim lim -CID- 1 
N-ce T-m T 

'=I 
(1.4) 

Apart from special cases [5], A cannot be exactly determined by analytical techniques. 
In fact, there are two main sources of difficulties. The fust one originates from space- 
time correlations typical of any deterministic evolution rule, like (1.1). The other one 
follows from the non-commutative nature of process (1.2). 

In order to obtain at least some approximate analytical solution, we replace the 
coefficients a F / a y i  in (1.3) by a &correlated random process a f .  This amounts to 
a suitable random matrix approximation of the dynamics defined in (1.2) and (1.3) 
[6]. In formulae 

(1.5) <'+I - R' t 
N - < N  

with ( R')ij = a f a j - i  ( j  = i - 1 ,  i, i + 1). Periodic boundary conditions imply for R' 
the same relations as for A'. We expect that this approximation works increasingly 
better for E - 0 and for sufficiently chaotic maps F, as these conditions guarantee 
small space and time correlations, respectively. 

The advantage of a random matrix approach is that one can apply mean-field 
techniques for evaluating A in close analogy with those used to solve analytically 
the problem of directed polymers in a random medium [7]. We further restrict our 
investigation to the case of positive random numbers af so as to simplify the analysis 
(this corresponds to considering the class of maps F with an everywhere positive 
derivative). More precisely, the REM (random energy model) formalism [8], yielding 
the exact solution for sparse random matrices [7], is adapted in section 2 to Jacobi 
random matrices. This allows us to predict a logarithmic behaviour for A in the limit 
E ' O  

A -, A. + I log el-' (1.6) 
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where A. is the Lyapunov exponent for E = 0. Moreover, this mean-field method 
indicates the existence of a critical value eC, separating WO different ‘phases’. 

Numerical simulations for products of Jawbi random matrices (1.5) confirm the 
logarithmic scaling behaviour (1.6). On the other hand, no indication of a phase 
transition is found. In addition simulations on a ID CML model of expanding piecewise 
linear maps with positive slopes confirm both the existence of the predicted scaling 
behaviour, and the absence of a phase transition. 

In section 3 we follow a more refined approach to the problem, based on the 
so-called tree approximation [9]. The results coincide with those derived in section 
2 One might expect that higher-order tree approximations may remove the phase 
transition. 

Section 4 is devoted to the analysis of the simplest version of our model, ie. 
product of 2 x 2 random matrices. A logarithmic scaling law of A for E i 0 is 
again found by a fuiiy anaiyticai treatment. This allows us to explain this ‘universai’ 
property reducing the problem to the study of a suitable diffusive process. 

Conclusions and perspectives are reported in section 5. 

2. Mean-field approach 

In this section we develop a mean-field approach to the estimate of the maximal 
Lyapunov exponent A for the product of random matrices defined in (1.5). This 
method is inspired by the one used in the approximate solution of the problem of 
directed polymers in a random medium [7l. 

of the Lyapunov vector is the 
sum of the multipliers M associated to all paths belonging to the light-cone of site 
(i, 2)  in the spacetime lattice. More precisely let us assign a factor e/2 to diagonal 
(D) links and a factor (1 - E )  to horizontal (H) links joining two neighbouring sites 
(see figure 1). 

According to definiton (1.5) the generic element 

Figure 1. Some typical paths joining p i n t  A with 
point B through horizontal (full) and diagonal pro- 
ken) Links. 

The multiplier M , ( m , T )  associated with a generic path p of length T ?n with 
D-links can be written as 
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where a b  is a shorthand notation for a$:{, k being a parametrization of path p .  
Since all components are equivalent, the maximal Lyapunov exponent is given by 

Observe that in this approach the limit T -+ M implies the limit N -+ 00. 

It is useful to define the rate 

where, for the sake of simplicity, we have dropped the dependence on the path p. 
The probability density of i satisfies the scaling law 

P ( i , T )  r? e-f(i)T. (2.4) 

f(i) = q i  - L ( q )  f'(i) = q (2.5) 

It is convenient to introduce the Legendre transform L( q )  of f( i) 

where the prime denotes the derivative with respect to i. If the a k  values are 
&correlated, then 

L ( q )  E log Q(a)a(da 0.6) J 
where Q(a) denotes the probability distribution of a values. 

X along the path p ,  
By inserting equation (2.3) into (2.1), we obtain an expression for the growth rate 

E 
(2.7) logMp(m,T) = i + I l o g Z + ( l - z ) l o g ( l - E )  

T A =  

where I G m / T  is the fraction of D-links. The probability P(A,T,z) to find a 
path of length T characterized by a growth rate X and by a fraction I of D-links 
P( A ,  T ,  z) is obtained by substituting equation (2.7) into (2.4) 

P( A ,  T , z )  = p(X - (1 - z) log(1- E)  - z l o g ( ~ / 2 ) ,  T). (2.8) 

It is worth to observing that, although the random variables a f  are 6correlated, 
the multipliers Mp(m,T) are not independent from one another because of the 
superposition of many different paths entering (2.2). Since a full a m u n t  of these 
correlations is not feasible, we estimate A under the approximation that all multiplica- 
tive processes are reciprocally independent. This h essentially the idea of the REM 
introduced by Derrida [SI; the main difference in our case is that pathdependent 
weight factors ai have to be assigned to the random entries of matrix (1.5). 

Under this approximation the typical number N(A,T,z) of paths of length T 
with a fraction I of D-links and characterized by the growth rate X factorizes into the 
product of the probability in formula (2.8) by the multiplicity of such paths. %clking 
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into account that from each site WO paths depart with a D-link and only one with an 
H-link, we immediately obtain 

By replacing Cp,m with JdzdXN(X,T,z) in (2.2), one finally obtains 

eAT = dzdXexp [ (  - J ( h )  + zlog2 - (1 - z)log(l  - z) - z logz  + X)T] 

(2 10) 
I 

where we have also used the Stirling formula to approximate the factorials in 
(2.9). The integrai can be computed by the standard saddle-point method when 
T - CO, taking into account that j; is a function of both X and 2: (see (2.7)). 
The stationarity conditions are 

(2.11) 

Hence, 

x = E  (212) 

ie. the fraction of D-links maximizing the contribution to the Lyapunov exponent 
coincides with the coupling strength itself. Upon substituting equations (27) and 
(2.12) into (2.10), and neglecting corrections to the saddle point, we find 

A = ,i - J(i). (2.13) 

From the first part of (2.5) it is readily seen that A can be written in the more 
compact form 

A = L(1) (2.14) 

where L(1) is the generalized Lyapunov exponent [lo] for p = 1 associated with the 
scalar multiplicative process. Notice that A is independent of the coupling constant E .  

This result holds only if the typical number of paths maximizing the integral in 
(2.10) is larger than 1, otherwise there are no paths, for T i m, verifying the 
ktionarity conditions (2.11) (this is a well known argument in the standard solution 
of the REM model [SI). In such a case, the Lyapunov exponent is determined by 
setting the exponential growth rate of N( A ,  T ,  z) equal to zero, 

f(i) + zlog ;2: + (1 - z) log(1- z) = 0 .  (2.15) 

More precisely, once j; is determined from (2.15) and the second part of (2.11) (in 
fact, the maximization over z values is still meaningful), the Lyapunov exponent b 
simply given by the corresponding X value. Notice that in this phase the equality 
J’ = 1 no longer holds, and 2: is different from E .  
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One may ask whether both phases can indeed be observed by varying the coupling 
strength E .  The second one is equivalent to the low-temperature phase in the REM 
model and certainly holds in some neighbourhood around E = 0, where clearly A = 
A,, = limq+,, L ( q ) / q ,  ie. the Lyapunov exponent coincides with the characteristic 
exponent of the random process ak. The presence of the first phase depends upon 
the existence of a solution of the equation 

- EC log $Ec - ( 1  - E J  log( 1 - E J  = f (  i). (2.16) 

Here, the function f is computed for the value of the argument where f' is equal 
to 1. As the maximum value of the left-hand side (achieved at e = $) i., log3, f 
must be smaller than such a value, in order to have the transition. Therefore, the 
first phase can be observed only for suitable probability distributions Q(a) .  

An interesting p i n t  is related to the scaling dependence of the Lyapunw expo- 
nent on the mupling strength. 'Ib this aim, let us expand f (  5) around the maximum 
A0 

f(i) = 0 6  (217) 

where 6, = ( A  - A,,). Let us now substitute (217) into (2.15) and (2.11). Bkmg the 
leading order in E and x as both tend to zero, the latter equations reduce to 

206, log E = log z 06: = -x log x.  (2.18) 

After solving for 6, from the first part of (2.18) and substituting in the second one, 
we find an equation for z 

log x = -4Px(log e)Z. (2.19) 

By introducing the auxilialy variables U = -log x and + = 4 P ( l o g ~ ) ~ ,  (2.19) reads 
as 

logu = log+-  U .  (2.20) 

Since, for E - 0, i.e. 4 - 00, the leading-order solution of (2.20) is U = log 4, one 
easily obtains 

(2.21) log IlogEI + U ( l 0 g l o g ~ l o g s ~ )  
2P(Iog e)2 

x =  

Thus we see that x goes to zero, although more slowly than E.  By' substituting in the 
first part of (2.18) we find the solution for 6,, 

(2.22) 

The expression for A is obtained from (2.7) neglecting next-to-leading order terms, 
both in x and E 

A = A,,+ 6, + z loge .  (2 .W 
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Inserting equations (221) and (2.22) into (2.23) yields, 

(224) 

which indicates a very slow convergence towards the limit value A,, for E = 0. 
We cannot expect that (2.24) holds exactly, as the model equations have been 

derived disregarding all kinds of correlation. Nevertheless, this approximation is 
sufficient to catch the relevant features. 

We have performed numerical simulations with products of random matrices of 
various sizes, and uniform distributions Q ( a )  over different intemls [amin, a,,,]. In 
figure 2 we report 

C ~ ( A - A , , ) ~ l o g l , , ~ ~  (2.2-9 

against E for 100 x 100 matrices (for matrices of this size, A turns out to be almost 
independent of N (see (1.4))). C clearly converges towards a constant value for 
E + 0. The constancy of C implies that the leading behaviour I log ~ 1 - l  is confirmed, 
while no evidence is found of the further correction factor log I log €1. This should 
not be considered as a major drawback, since (2.24) is based on a model which 
neglects all kinds of correlation. 

i I 

0.0 , , , 'p" 
-12 -8 -4 0 

Figure 2 C (see equalion (2.23)) against E for 
amli = 3, amin = I (squares), amin = 5 (circles) 
f" products of 100 x 100 random matrices. ?he 
CUN- am guides far the eyes. 

0.75 

0.70 

0.65 
C 

- . . . . . . . .-- 
A 

K _ -  .- 

E x  100 

0.5 1 .o 

Figure 3. A againsl c for amin = 1 and amax = 3 
(continuous awe) ,  "pared with the theoreti- 
cal prediction emken awe) .  ?he a m  indi- 
ca t s  the lmnsilion point as f" the mean-field 
approach. Note also that the asymptotic value 
A(0) = $ l o g 3  - 1 = 0.6479 ... lies under the 
lower edge. 

In figure 3, A is plotted against E for the same parameter values as in figure 
2. We do not observe any phase with constant A and even more, no evidence of 
non-analytic behaviour. 

Simulations have also been performed directly for a CML model. We have chosen 
the map F as in figure 4, such that all multipliers are positive. The results for C, 
reported in figure 5, again confirm the scaling law (1.6). This last result suggests also 
that this scaling law is largely independent of the probability distribution Q ( a ) .  In 
fact, in the case of the map in figure 4, Q ( a )  = y6(a - 9) + ( 1  - ? ) & ( a  - 9/4),y E 
[0,1], substantially different from the flat distributions used in the simulations with 
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. .  

F@R 4 ?he local map F(z) chosen for numer- Figure 5. C against c for a chain d 1M m a p  as 
icnl simulations. 'Ihe two slopes a n  9 and 915. m figure 4. 

the random matrices. Let us also observe that in the cML case the distribution Q( a)  
does depend on E through the weight y. Nevertheless our numerical results show 
that this does not affect the leading term of the scaling law. 

% TI.,. "-......-....".:-- a. lllS YSS '~p.uA1."PL.u1, 

Let us consider the multiplicative process (1.2) from a different point of view. The 
elements of the vector E' are updated according to the rule 

= a((1 - .,t: + f 4 E f - 1  +[:+I)) (3.1) 

where a is the random multiplier. 
Following the dictionary of directed polymers, a is parametrized as exp(-pV), 

where V is a random potential with probability distribution p( V), and p is the 
inverse temperature. The problem is therefore reshaped as follows 

E:+' = exp-8(v,-w-t)) t i  ' + ~x~-8(v-'"(f/2))(t:-l +tit1) (3.2) 

where the multiplicative factors (1 - E )  and &/2 are raised to the power p. It is 
worth observing that p here is a fictitious parameter which will be set equal to 1 in 
the end. 

The approximation consists in neglecting correlations after one step in the re- 
cursive process. More precisely, the following evolution equation for the probability 
distribution P ( < )  of E is written 

Pttl ( E )  = 1 d€f-,dEfdtf,, d Vp( V) (3.3) 

This is called tree approximation in the theory of directed polymers [9]. Some 

function 

pi(&) pt(€i+l ) & ( E  - t:"). 

:mc,.--m.:,...n A- +Ln r n l . . + : m i  A f  I??\ --a n h r - t n m r i  hv t m + r n A s ~ & m "  +ha namar%+inn 
Y,,UIII,~"",W U,, U,* Y Y I Y U U L l  U, (A.,, ' .L l  ""L"..IIY ", Y.L."""l...e U. l el'.l...LY.e 

G{(z) E (exp(-exp-@t)), (3.4) 
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where the average ( J t  is performed over the probability distribution P,(<).  According 
to (3.3), G,(z )  evolves as 

G,+,(z) = / p ( V ) d V G , ( s +  V - l n ( l - ~ ) ) G : ( z +  V - l n ( ~ l 2 ) ) .  (3.5) 

The initial condition is given by 

G,(z) = exp(-exp-P2). 

The generating function has the following property 

lim G,(z) = 1 lim G,(z) = 0. 
=-cc *--cc (3.7) 

The value G, = 1 is an unstable fixed point of the map (3.9, while G, = 0 is a 
stable fixed point. In analogy with directed polymers, the dependence on p is entirely 
contained in the initial conditions. In our case this is a straightforward consequence 
of the initial choice of raising to the power P the €dependent factors in (3.2). 

Equation (3.5) admits travelling wave solutions [9] 

G,(z)  = w ( z  - c t ) .  (3.8) 

The asymptotic behaviour of w(y)  is, from equations (3.4), (3.6), 

w( y) - 1 - exp-oy . (3.9) 

This equation shows that the product CO mrresponds with the usual definition of the 
Lyapunov exponent. 

By substituting equations (3.8) and (3.9) into (3.5) and neglecting higher-order 
terms, one obtains the following equation for the wave velocity 

(3.10) 

where & ( E )  is implicitely defined by 

(3.11) 

This relation represents a critical line in the parameter space ( P , e ) .  Its intersection 
with the line p = 1 yields the critical value eC 

(3.12) 

where the averages are performed Over the given probability distribution of a. One 
can notice that in the derivation of (3.12) it has been crucial to begin with a generic 
value of 10. 
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The critical value E~ defined by (3.12) coincides with the one obtained with the 
mean-field method in section 2. In fact, one has to impose that equations (2.10) and 
(2.14) hold simultaneously. Then, from the Legendre transform (2.4), observing that 

-f(i)= L(1)-L'(1) (3.13) 

= L'( q ) ,  one obtains 

which manifestly coincides with (3.12). 
Finally, the Lyapunov exponent is given hy 

A =P,c(P,,E) if E < 
A = c ( ~ , E ) )  if E > E = .  

n.is last resdt ho!ds under the assumption t_h.at 

P c ( ~ )  <1 

& ( E )  > 1  

if E < e, 

if E > e, 

(3.14) 

(3.15) 

which has been numerically verified for some probability distributions Q( a). In fact, 
from (3.10), one can use the fact that c ( ~ , E )  is constant for a given wlue of E if 

From (3.14) and (3.10), one obtains the same expressions for the maximal Lya- 
punov exponent as those derived in the previous section with the mean-field method. 

P > i?,. 

4. Iko-dimensional model 

In order to better comprehend the origin of the scaling behaviour of the maximal 
Lyapunov exponent, we now study the simplest non-trivial case: 2 x 2  random matrices 
of the form (1.5). The evolution of the two components U and U of a vector E is 
described by the recursive relation 

where a, and b, represent two independent realizations of the same random process, 
with a,, b, > 0. 

Equation (4.1) can be written as a recursive equation for U,, only, 

This equation can be transformed into a ID nonlinear equation by introducing 

s, I unla,,-lu,-]. (4.3) 

We obtain 

sa+, =(l-€)(l+-)-(l-W-- k - 1  bn-I 1 
an-1  a n - 1  s n  

(4.4) 
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Notice that S, represents the multiplicative correction to the uncoupled (i.e. E = 0) 
process, so that it is a proper variable to estimate the variation of the Lyapunov 
exponent. 

From (4.4) we also notice that the two random processes always occur via their 
ratio 

c, bn-l/an-l. 

Therefore, (4.4) can be rewritten as 

(4.5) 

',+I - - (1 - E ) ( 1 +  c , )  - ( 1  - 2e)c, /S, .  (4.6) 

Fbr E = 0,  S, = 1 is a fixed point of (4.9, in agreement with the interpretation of 
the variable S,. If one is interested in the small E limit, it is useful to introduce the 
new variable 

R,  = S, - 1. (4.7) 

Equation (4.5) can be finally written as 

R,,, = - - 
1 + R, 1 + R,  

The structure of (4.8) reminds us an analogous equation derived to describe anoma- 
lous diffusion in a 1D chain characterized by random potentials [ll]. In that case the 
starting Master equation was mapped onto a Schrodinger problem and then trans- 
formed into a transfer matrix equation for the spectrum. The multiplicative noise 
was shown to lead to a new type of intermittency phenomenon with entirely different 
scaling laws. Here, we show that a similar scaling law is found, despite the fact that 
it is not explained in terms of some intermittent mechanism. 

Let us first investigate the case E = 0. The hyperbolic map (4.8) crosses the 
bisectrix in R(O)(c,) = 0 and R(I)(c, ,)  = c, - 1. For c, > 1 (c ,  < 1) the slope 
on = aR,+ , /aR ,  is larger (smaller) than 1 in R(') and smaller (larger) than 1 in 
R(') (observe that for C, = 1, R(O) = R(l)) .  Being R(O) independent of the random 
variable c,, it is a true fixed point of (4.8). In the linear approximation around 
R(O), R, = ciR0. Since ci is equally probable to (ci)-', the fixed point R(O) 
is marginally stable. As a consequence, its stability is determined by the nonlinear 
contribution: for R, > 0, it is straightforward to show that R , / R ,  < c;, Le. 
R(O) is nonlinearly stable from the right. The same argument shows that R(O) is 
unstable from the left. 

For small E and 16,l > E (with 6, = 1 - c,)  the two intersections of (4.8) with 
the bisectrix at order E' are 

E'Cn 

1 - c, (4.9) R(O)(c,) = - E  + - E ' c,, R ( ' ) ( cn)  = C ,  - 1 - E C ,  - ~ 

1 - c ,  

where the dependence of both R(O) and R(')  on E is understood. Note that R(O) now 
does depend on c,, at order E ' .  When Is,, < E ,  i.e. when the hyperbolic map (4.8) 
is nearly tangent to the bisectrix in the origin, the two intersections are, at order E ,  

- J-. 
2 

R( - (4.10) 
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It is important to observe that, since the term in the square root of (4.10) is positive 
definite, the two intersections always exist also in this case. 
' 

' We can now show that the intersection R(")(c,) with slope U, larger than 1 
smaller than -e for all e,, while the intersection R(")(c,)  with slope U, smaller 
than 1 is larger than -e for all c,. In fact, from equations (4.9) and (4.10) it follows 
that 

R(")(c,) =R(')(c,) R(')(c,) = R(')(c,)  i f c ,  > l + &  

R(")(c,) =R(')(c , )  R(')(C,,) = R(')(c,) i f  e,  < 1 -  e .  

One can immediately notice that R(")(c,)  < --E - = A, and R(*)(C,) > -E  + 
e2 = B.. Now we can prove that, if R, > B, then R, > E Vn. In fa& from B > A 
it ~OIIOWS that R, > k ( u ) ( c , )  for a l i  c,. The only c, values giving R, <  are 
those for which R(*)(c , )  < R,, but then R, > B. This concludes the proof. 

Accordingly, for large values of R,, nonlinear terms prevent R, from diverging 
to +ea, while for R,  B, e2 terms prevent R, + E from becoming smaller than 
e2. In particular, this last mechanism excludes the existence of any intermittent 
phenomenon. Therefore, the dynamics of 'R,  is bounded both from above and 
below. Within these bounds, and for E small enough, we can linearize the equations 
of motion around --E and neglect e2 terms. We find that w, I log( R, + E )  exhibits 
a diffusive motion 

R(")(c,) =R( - ) ( c , )  R(')(c,) = R(+)(c , )  i f  1 - e  < c ,  < 1 + E  (4.11) 

w,+, = Wn + log c , .  (4.12) 

Accordingly, the dynamical behaviour can be modelled as a pure diffusive process in 
the interval wmin = 2 log E + g1 < wn < g2 = w,,,, with g1 and g2 independent of 
E. Moreover, the previously discussed confinement mechanisms of the dynamics can 
be schematized as reflecting barriers set at wmin and w,,,. Hence, the probability 
P(w)dw to find w between w and w + d w  is expected to be flat inside [wmin,w,,,] 
except for some deviations in two finite regions around the extrema of this interval. 
This conjecture has been numerically verified (see figure 6). We will see that the 
unknown constants g1 and g2 contribute only to the prefactors, while they do not 
affect the scaling law of the Lyapunov exponent. 

Let us now link the probability density P( w) with the Lyapunov exponent 

(4.13) 

The first term in the right-hand side of (4.13) is the Lyapunov exponent A, of the 
uncoupled me. Recalling (4.7) we obtain 

(4.14) 

where only the first-order term in R,  has been retained. The average R value can 
be determined from the w distribution 

(4.15) 
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Figure 6 Probability distribution of U) for 2 x 2 
random matrices; an and bn M randomly chosen 
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Flgure 7. C against c for 2 x 2 random matrices; 
circles and do& refer to the same prameter values 
as lhwe reponed m figure 7. for 100 matrices. 

respectively. 

Neglecting higher-order terms in e ,  we obtain 

e92 (R) 
2 log E 

(4.16) 

Such a scaling behaviour coincides with the one found in the previously mentioned 
Schrodinger problem [ll], although we are not in the presence of any intermittency. 
Notice also that only g2 contributes to the leading term. This is somehow clear 
because only large R, values give relevant contributions to the average. 

We have performed numerical simulations for the same random processes studied 
in section 2. The results are shown in figure 7. The logarithmic behaviour is again 
perfectly confirmed. We also see that the asymptotic C value is significantly smaller 
than in the high-dimensional case. 

5. Conclusions and perspectives 

We have studied the scaling law of the maximal Lyapunov exponent A when E - 0 
for coupled map lattices, where the local map F is chaotic and for products of 
Jacobi random matrices, which can be thought of as an approximation of the chaotic 
dynamics. 

Analytical and numerical methods show the presence of a logarithmic behaviour 
a s & - 0 :  

A . - h , + I l o g ~ ( - '  

This scaling law is derived by an extension of the techniques used for solving the 
REM [8], which amounts to neglect correlations among paths. The introduction of a 
partial correlation by a proper tree approximation [9] does not modify this scaling 
behaviour. Both analytical treatments suggest the presence of a phase transition at 
E ~ ,  which is not seen in numerical simulations. Higher-order tree approximations [12] 
might remove this phase transition. 
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A turns out to be an increasing function of E .  This result seemingly contradicts 
the statement that the diffusive coupling tends to decrease the ‘chaoticity’ of a CML 
In fact, we expect that a more appropriate global indicator as the Kolmogorov-Sinai 
entropy (i.e. the sum of all the positive Lyapunov exponents) should decrease for 
increasing E .  

In the special case of 2 x 2 ramdom matrices we have identified the dynamical 
mechanism which leads to the scaling law. It is a diffusive process of a proper variable 
inside a finite interval, whose lower limit depends on E .  One could conjecture that the 
same mechanism is present also in matrices of higher rank, although the mathematical 
treatment cannot be a direct extension of the 2 x 2 case. 
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